Cell-type-specific activation and repression of PU.1 by a complex of discrete, functionally specialized cis-regulatory elements.

نویسندگان

  • Mark A Zarnegar
  • Jing Chen
  • Ellen V Rothenberg
چکیده

The transcription factor PU.1 is critical for multiple hematopoietic lineages, but different leukocyte types require strictly distinct patterns of PU.1 regulation. PU.1 is required early for T-cell lineage development but then must be repressed by a stage-specific mechanism correlated with commitment. Other lineages require steady, low expression or upregulation. Until now, only the promoter plus a distal upstream regulatory element (URE) could be invoked to explain nearly all Sfpi1 (PU.1) activation and repression, including bifunctional effects of Runx1. However, the URE is dispensable for most Sfpi1 downregulation in early T cells, and we show that it retains enhancer activity in immature T-lineage cells even where endogenous Sfpi1 is repressed. We now present evidence for another complex of conserved noncoding elements that mediate discrete, cell-type-specific regulatory features of Sfpi1, including a myeloid cell-specific activating element and a separate, pro-T-cell-specific silencer element. These elements yield opposite, cell-type-specific responses to Runx1. T-cell-specific repression requires Runx1 acting through multiple nonconsensus sites in the silencer core. These newly characterized sites recruit Runx1 binding in early T cells in vivo and define a functionally specific scaffold for dose-dependent, Runx-mediated repression.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Transformations of Genome-wide Epigenetic Marking and Transcriptional Control Establish T Cell Identity

T cell development comprises a stepwise process of commitment from a multipotent precursor. To define molecular mechanisms controlling this progression, we probed five stages spanning the commitment process using RNA-seq and ChIP-seq to track genome-wide shifts in transcription, cohorts of active transcription factor genes, histone modifications at diverse classes of cis-regulatory elements, an...

متن کامل

IFN-stimulated gene 15 is synergistically activated through interactions between the myelocyte/lymphocyte-specific transcription factors, PU.1, IFN regulatory factor-8/IFN consensus sequence binding protein, and IFN regulatory factor-4: characterization of a new subtype of IFN-stimulated response element.

Type I IFNs cause the induction of a subset of genes termed IFN-stimulated genes (ISGs), which harbor a specific DNA element, IFN-stimulated response element (ISRE). This ISRE confers the responsiveness to the IFN signal through the binding of a family of transcription factors designated IFN regulatory factors (IRFs). Some IRFs can bind to the DNA alone, such as IRF-1, which elicits transcripti...

متن کامل

SHP1 Protein-tyrosine Phosphatase Inhibits gp91 and p67 Expression by Inhibiting Interaction of PU.1, IRF1, Interferon Consensus Sequence-binding Protein, and CREB-binding Protein with Homologous Cis Elements in the CYBB and NCF2 Genes*

The CYBB and NCF2 genes encode the phagocyte respiratory burst oxidase proteins, gp91 and p67. Previously, we identified homologous CYBB and NCF2 cis elements that are necessary for lineage-specific transcription during late myeloid differentiation. We determined that these homologous cis elements are activated by PU.1, IRF1, interferon consensus sequence-binding protein (ICSBP), and the CREB-b...

متن کامل

A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors.

Transcription factors often activate and repress different target genes in the same cell. How activation and repression are encoded by different arrangements of transcription factor binding sites in cis-regulatory elements is poorly understood. We investigated how sites for the transcription factor CRX encode both activation and repression in photoreceptors by assaying thousands of genomic and ...

متن کامل

Direct regulation of knot gene expression by Ultrabithorax and the evolution of cis-regulatory elements in Drosophila.

The regulation of development by Hox proteins is important in the evolution of animal morphology, but how the regulatory sequences of Hox-regulated target genes function and evolve is unclear. To understand the regulatory organization and evolution of a Hox target gene, we have identified a wing-specific cis-regulatory element controlling the knot gene, which is expressed in the developing Dros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 30 20  شماره 

صفحات  -

تاریخ انتشار 2010